If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9m^2+8=53
We move all terms to the left:
9m^2+8-(53)=0
We add all the numbers together, and all the variables
9m^2-45=0
a = 9; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·9·(-45)
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{5}}{2*9}=\frac{0-18\sqrt{5}}{18} =-\frac{18\sqrt{5}}{18} =-\sqrt{5} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{5}}{2*9}=\frac{0+18\sqrt{5}}{18} =\frac{18\sqrt{5}}{18} =\sqrt{5} $
| 27-9x=65 | | 3^(2x+1)=4^(6x) | | x+21=57 | | 5y^2y=3 | | 1/5^x^-3=25^6 | | -3.4+x/4=-9.8 | | 4x+23=7x-4 | | 4x+8+2x=180 | | 3x2-4x=6 | | 20-5s2=0 | | y-5=6y+15 | | 39x+4)=21 | | (x-6)^2-25=0 | | 8w2-2w-15=0 | | 3/12x4/31=7/12 | | 0=10p^2-17 | | 3y2+7y=0 | | d2+10d+25=0 | | 4x+86=15x-2 | | 3z2-5z-28=0 | | -5c=(5/24) | | 14+5=-5x-6(13x+15)+5 | | 14+5=-5x-6(13x+15) | | h2-6h=0 | | -3x^2+x^2-8+4x-3x^2-2=0 | | (x/4.4)=-15.6 | | 2x^2*7x+26=0 | | 5q-32=8- | | (7x-1)(9x+8)=0 | | 5r2-8=32 | | (12+x)(10+x)=180 | | -8/7=-5/3v+7/2 |